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A 
graph is a group of associated 
objects represented by a network 
of vertices and edges, where a 

P a u l  B u r k h a r d t

Our brain is a Big Graph, a 
network of trillions of neurons 
connected by synapses, 
whose topology shares 
common characteristics with 
other graphs, such as social 
networks. Can we unlock 
the secrets of our neural 
processing using graph theory 
and Big Data technologies? 
(Image reprinted from [1].)

vertex is an object and an edge connects a vertex to another vertex to denote their pairwise 
relationship. Graphs arise naturally from physical networks, such as the roads and highways 
connecting our cities, the power grid that transfers electricity to our homes, and the �ight 
paths between airports (see �gure 1). Biological systems also exhibit graphs, such as the 
interactions between proteins (see �gure 2) and the conformational topology of polymers. 
The neurons in our brain send signals over synapses, forming one of the largest natural 
networks in existence. We also engineer networks from the minute electronic circuitry in 
microprocessors to the massive digital network of the Internet, displayed as a graph in �gure 
3, facilitating communication between computers all over the world. 

FIGURE 1. Graphs arise naturally from physical 
networks, such as the �ight paths between airports. 
(Design: Thirst. Project: O’Hare Terminal 5 Mezzanine 
Mural. Client: West�eld Development. Illustration built 
using Processing Data by http://OpenFlights.org [2].) 
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FIGURE 2. (a) Biological systems also exhibit graphs, such as the interaction between 
proteins. Above is a yeast protein interactome. (Graph created with Gephi, http://
www.gephi.org.) (b) Above is a Mycobacterium tuberculosis interactome. (Image 
reprinted from [3].)

FIGURE 3. We engineer networks, such as the digital 
network of the Internet, displayed above as a graph. 
(Image from [4].)

Graphs are everywhere

A graph can also be constructed from abstract and 
less obvious sets of relationships. For example, 
this article can be visualized as a graph of words. 
While reading this sentence, connect any pair of 
words co-occurring in a span of four words but 
counting only nouns and verbs. Our simple word 
graph in �gure 4(a) reveals a number of cliques 
with a maximum size of four vertices. A clique is 
a group of vertices that are all pairwise connected, 
indicating the vertices are closely associated be-
cause each vertex is directly connected to any other. 
An interesting structure emerges where two of the 
largest cliques around the predicates connect and 
counting share the words vertex, thus tying any 
pair of vertices in this structure by two edges or 
less (see �gure 4(b)). We can infer that connecting 
pairs of words in the sentence is closely associated 
with counting nouns and verbs, but reading is not 
closely associated to nouns and verbs in this context 
because reading is separated by no less than three 
edges to either nouns or verbs , despite the obvious 
grammatical relationship. 

Word co-occurrence graphs are an abstract 
representation of written language that can help ex-
pose semantic meaning by machines. Another less 
obvious utilization of graphs is solving the short-
est superstring problem—the task of creating the 
shortest string that contains each substring from a 
set of n substrings. If the length of the superstring 
did not matter, then the problem is trivially solved 

by concatenating all the 
substrings. Constructing the 
shortest superstring that con-
tains each substring exactly 
once is much harder but has 
applications in data compres-
sion and genome assembly. 
A brute-force method that 
shortens a superstring by the 
overlap between substrings 
must do so for all n! possible 
superstrings, which quickly 
becomes intractable (e.g., 15! 
is over one trillion). 

�e shortest superstring 
problem can be solved by 
creating a graph where 

vertices are the n substrings and all pairs of verti-
ces are connected by edges with a weight given by 
the longest su�x of one vertex that is equal to the 
pre�x of the other and a direction in that order, 
then �nding a Hamiltonian path that visits each 
vertex once while maximizing the overlap (also 
known as the Traveling Salesman Path Problem). 
But �nding a Hamiltonian path is in the class of 
NP-complete (i.e., nondeterministic polynomial 
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FIGURE 4. (a) Texts can be visualized as a graph of words, such as the graph above of the co-occurrence of words in a sen-
tence from this article. (b) These word cliques (a clique is a group of vertices that are all pairwise connected) from �gure 4(a) 
reveal associations between words. Here, they reveal that connecting pairs of words in the sentence is closely associated with 
counting nouns and verbs.

time-complete) problems for which e�cient solu-
tions are not known. 

A special case where each substring has length 
k over an alphabet of size n is more tractable. �is 
problem can be solved by constructing a de Bruijn 
graph where each k-length substring is an edge that 
begins from its (k-1)-length pre�x and ends at its 
(k-1)-length su�x, then finding a Eulerian cycle—a 
path that traverses each edge exactly once before 
returning to the origin. (Eulerian cycles are inspired 
by Euler’s 1735 solution to crossing the Seven 
Bridges of Königsberg over the river Pregel which 
started the study of graph theory.) �e de Bruijn 
graph in �gure 5 admits a Eulerian cycle, just follow 
the labeled edges in order and concatenate the first 
symbol in each edge to construct the cyclic super-
string 0000110010111101, representing all sixteen 
k=4 length substrings for an alphabet of 0 and 1. 
�e graph by de Bruijn is an important method 
used in DNA sequencing where possibly billions of 
k-mers (i.e., substrings of k-length) must be assem-
bled to construct the final genome sequence. 
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FIGURE 5. This de Bruijn graph admits a Eulerian cycle—a 
path that traverses each edge exactly once before return-
ing to the origin. This type of graph can be used to solve 
the shortest superstring problem and is used in DNA 
sequencing. (Image reprinted by permission from Macmillan 
Publishers Ltd: Nature Biotechnology, available at http://www.
nature.com/nbt/index.html, Compeau PE, Pevzner PA, Tesler 
G, “How to apply de Bruijn graphs to genome assembly,” doi: 
10.1038/nbt.2023, �g. 2, 2011 [5].)
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What can graphs tell us? 

A graph can be a beautifully complex and intrigu-
ing topology of interconnected pathways, alluding 
to hidden meaning and secrets available only to the 
intrepid willing to walk the edges. O�en the graph 
resembles little more than a hair ball, such as the 
graph of the World Wide Web in �gure 6, obfus-
cating insight by the seemingly infinite number of 
circuitous paths. But Google’s search engine, for ex-
ample, is based roughly on the concept of randomly 
following links from one web page to another in a 
gigantic web graph, ranking each page according 
to the popularity of the pages that link to it, and 
returning surprisingly accurate search results. 

Social interactions can be symbolized by graphs 
(e.g., the Twitter graph in �gure 7) and inspire col-
loquial phrases such as small world and six degrees 
of separation, indicating that we are all connected 
by just a few associates. �e topology of our social 
networks was discovered to be more resistant to 
failure when nodes or links are removed, which 
can result in the dissociation of communities 
or the disruption of pathways, and to be better 

FIGURE 6. Some graphs, such as this World Wide Web graph, 
are so complex that they resemble little more than a hair 
ball. (Image from [6].)

FIGURE 7. Social interactions, like those on Twitter, can be 
symbolized by graphs. (Graph created with Gephi, http://
www.gephi.org.)

at disseminating information than other graph 
topologies [7, 8]. �ese small-world graphs have 
more cliques and shorter paths, but it is the severe 
inequities among the vertices that explain why ru-
mors and disease quickly spread throughout these 
networks. Because a few vertices incur the vast 
majority of edges, acting as hubs, many low-degree 
vertices with only a few direct neighbors are able to 
exchange information easily [8]. 

Such small-world graphs can be found in many 
real-world networks. For example, the hub struc-
ture can be found in the network of US airports 
where, according to 2012 data, 80% of passengers 
are serviced by only 50 out of nearly 20,000 airports 
[9, 10]. �e small-world graph properties can also 
be found in neural networks, such as that of the 
soil nematode Caenorhabditis elegans (shown in 
�gure 8), implying these graph properties have an 
evolutionary benefit [7]. �us, out of complex, un-
ordered, and decentralized interactions, logic and 
purpose arise. Small-world graphs develop natu-
rally without any centralized control or predefined 
order but rather from preferential attachment where 
popular nodes become more popular over time—
just as our network of roads started as decentralized 
clusters localized to cities and towns, eventually 
connecting to other clusters creating hubs around 
the big cities. 

Graphs are truly everywhere and can be liter-
ally constructed from any data. But graphs do 
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FIGURE 8. Small-world graph properties can also be found 
in neural networks, such as this one of the soil nematode 
Caenorhabditis elegans, implying that these graph properties 
have an evolutionary benefit [7]. (Graph created with Gephi, 
http://www.gephi.org.)

not by themselves add information; instead, they 
help to organize data as a collection of (key, value) 
pairs that e�ectively encode binary relationships 
which, when analyzed in whole, can reveal surpris-
ing insight to complex interactions. Algorithms 
that discover cues from navigating the graph have 
been studied since the days of Euler and the Seven 
Bridges of Königsberg (only two bridges from his 
day still stand) nearly three centuries ago. Searching 
a complex network is an exemplary application of 
graph algorithms and one familiar to us each time 
we use GPS navigation to compute the best route 
from one location to another. But graph algorithms 
are computationally challenging because of their 
irregular structure and combinatorial expansion. 

One of the simplest data structures is a binary 
tree in which each node begets two more nodes. 
�e branches of this graph expand in powers of 
two, so a�er just 16 generations, there are already 
131,071 nodes, and another 16 generations later, 
there are over eight billion nodes. In most graphs, 
the branches are not regular and expand much 
more quickly. In many real-world graphs, the 
disparity in degree distribution creates significant 
resource contention during computation. �e 
powerful analytic capability of graph algorithms has 

motivated the design for e�cient parallel process-
ing of graphs in high-performance computing 
(HPC) systems. Fields such as genomics, molecular 
dynamics, and data science are utilizing many of 
these HPC graph algorithms to analyze their large 
and complex data sets. �e rising tide of Big Data 
has created interest in applying graph-theoretic 
approaches in these fields and many others. But as 
data sets get larger, the challenges to graph process-
ing increase to a point where even the most power-
ful HPC systems will buckle under the task of graph 
analysis on Big Data. 

Big Graphs 

�e introduction to Big Data gives a sense of the 
massive scale of some of these data sets which 
would create very big graphs. On any given day 
the web contains about 50 billion web pages (cf. 
http://www.worldwidewebsize.com), and if we 
estimate an average of 20 URL links per page, the 
web graph would have one trillion edges. In 2008, 
Google had already claimed to have indexed a total 
of one trillion pages. In October of 2012, Facebook 
announced that their social media site had reached 
one billion active monthly users, connecting one 
out of seven people on the planet, and since 2004, 
there have been 140.3 billion friend connections. 
In early 2013, Facebook announced their Facebook 
Graph Search to harness the Big Data graph in-
formation collected in their social network which 
could include the more than one trillion “likes” 
made by their users. 

�e computational resources for searching the 
web or the Facebook network are hidden in secret 
data centers built by Google and Facebook. But 
in 2010, Google published their Pregel paper for 
processing large-scale graphs [11]. In this paper, 
Google described their distributed-memory ap-
proach, which follows the bulk synchronous parallel 
(BSP) model of computing rather than the parallel 
random access machine (PRAM) model tradition-
ally favored for graph algorithms. A distributed-
memory system is a cluster of machines, each with 
their own private memory, and data residing in the 
memory of one machine must be explicitly commu-
nicated to another machine. Increasing the memory 
of such a distributed-memory system only requires 
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connecting more machines. In contrast, a shared-
memory system has a single pool of memory that 
is accessible to all machines, while each machine 
also has a small portion of private memory. Com-
municating data changes to all machines, therefore, 
simply requires updating the data in the pool. But 
a protocol must be enforced to ensure data remains 
consistent, especially when one machine has loaded 
data into its own private cache but, before it can 
process that data and replace the modifications in 
the pool, another may have already made changes. 
�is cache-coherency protocol makes it much more 
di�cult to scale shared-memory computers. 

Another limiting factor is that a central process-
ing unit (CPU) has a memory address limit. For ex-
ample; the Intel Xeon E5 has a 46-bit address space 
[12]; therefore, a system comprised of these CPUs 
can have no more than 64 terabytes (TB) of global-
ly-shared memory. It is not surprising that Google’s 
Pregel favors the distributed-memory model. But 
the Big Graph challenge does not end here. 

The problem with big brains 

One of the largest physical networks is our own 
neural network, the human connectome, depicted 

in �gure 9. If we count neurons as vertices and syn-
apses as edges, there are approximately 10 trillion 
vertices and 100 trillion edges in the human brain 
graph. If each edge were stored in 16 bytes, our 
brain graph would occupy over one petabyte (PB)—
that exceeds the practical memory capacity of any 
computing platform today. As described below, 
the largest memory capacity in a supercomputer is 
1.5 PB.

The human brain graph stored in bytes would occupy  

over one petabyte. How large is that?

(1,024)3 bytes = 1 gigabyte (GB)

1,024 GB = 1 terabyte (TB)

1,024 TB = 1 petabyte (PB)

Leaving the memory issue aside, if we traversed 
edges at a pace of one every millionth of a second 
(microsecond) it would us take over three years 
to visit each neuron without ever retracing a step. 
�is rate of one million edges per second is clearly 
impractical, but considering the fastest network 
technologies available have microsecond latency 
between one network interface to another, it will re-
quire careful implementation on a many-processor 

FIGURE 9. One of the largest physical networks is our own neural network, the human connectome. Copyright © 2011 
Gerhard, Daducci, Lemkaddem, Meuli, Thiran, Hagmann [13]. 
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supercomputer to overcome the latency costs 
incurred by traversing all the edges. 

A typical CPU, the “brain” we are familiar with 
in our personal computers, can operate at gigahertz 
(GHz) frequency where the CPU can perform an 
instruction every nanosecond (ns) or a billionth of 
a second; in one microsecond, the CPU will have 
cycled 1,000 times. �ere is also a speed limitation 
forced upon us by physics (despite recent excite-
ment in the now debunked “faster-than-light” neu-
trinos) that light travels approximately 0.3 meters 

every nanosecond. A graph with trillions of edges 
will necessarily be distributed across many com-
pute racks so the distance between racks at the far 
ends will be a factor. �is is the paradox—scaling a 
system to keep up with increasing data can make it 
more di�cult to process that data! 

As graphs scale with Big Data, increasing the 
physical memory to fit the graph may not always 
be practical or environmentally feasible. �e 
Cray Titan supercomputer installed at Oak Ridge 
National Laboratory was the world’s most powerful 
supercomputer in 2012 according to the Top500.org 
November list of that year [14]. �e $97 million Ti-
tan requires 8.2 megawatts (MW) of power [14] and 
over 4,300 square feet of space—an NBA basketball 
court is 4,700 square feet—but with a total memory 
capacity of 710 TB, it does not have enough mem-
ory to store the human connectome. �e second 
most powerful supercomputer on the November 
2012 list, the IBM Sequoia installed at Lawrence 
Livermore National Laboratory, requires 7.9 MW of 
power [14] and over 3,000 square feet of space. �e 
Sequoia has 1.5 PB of memory, just enough to store 
the human connectome, but leaves no memory for 
applications that could analyze the brain graph. At 
a hypothetical 10 cents per kilowatt-hour, it would 
cost about $7 million per year to power either of 
these supercomputers ($100⁄

MW 
x 8,760 h⁄

y
). 

Idle time on these systems is very costly, but en-
suring all CPUs are performing useful work when 
processing a Big Graph is a daunting challenge. A 
single Sequoia 1.6 GHz CPU can perform 204.8 
operations per nanosecond (i.e., 1.6 cycles/ns × 16 
cores × 8 operations/cycle per core) [15], but if it 
is requesting data from another CPU that is con-
nected 10 meters away, at least 33 ns will pass—due 
to the speed of light limit—before it can perform 

useful work. �at is a waste of 6,831 operations for 
just one CPU; there are 98,304 CPUs in Sequoia! 

Graphs at Big Data scales will demand substan-
tial system resources for processing and storing, but 
reality forces limitations on budget, which includes 
the up-front cost of an installation, lifecycle support 
and maintenance, and the power required to keep 
the lights blinking, disks whirring, and fans hum-
ming. �ese systems will inevitably face hardware 
and so�ware failures, making fault tolerance more 
imperative because restarting an algorithm on a 
petabyte or larger graph is very costly in time and 
resources. We need new approaches if we are to 
analyze Big Graphs. 

Exception! Out of memory 

In addition to the limitations of power, space, and 
cooling, there are hardware constraints to scaling 
the memory capacity of a system. Data is processed 
by entering through the CPU pins that interface 
the CPU to the memory bus. �e number of pins 
is physically limited, which results in a memory 
bandwidth wall. In addition, a memory controller 
that mediates the data between main memory and 
the CPU has a fixed number of memory chan-
nels for transferring data because of the electrical 
constraints in the circuitry. �ese constraints force 
a hard ceiling on the maximum memory capac-
ity for a processing unit. Using the Intel Xeon E5 
again as an example, it supports four channels with 
each channel supporting three memory slots for a 
total of 12 slots per CPU, and at 8 GB per slot [12], 
such a dual Xeon motherboard would have 192 GB 
of memory.

An adjacency list is a common graph data 
structure that uses an array for storing vertices and 
a doubly-linked list for storing the adjacency or 
neighborhood of each vertex. �is adjacency list 
requires on order of n + 4m memory locations for 
n vertices and m edges, and for large graphs, each 
location would require 8 bytes. To store the brain 
graph entirely in memory using the adjacency list 
(using 100 trillion = 2m), a system would need over 
8,000 of these Intel Xeon E5 motherboards and 
204 racks to house them; there are 200 racks in the 
Titan supercomputer. �e cost in memory alone for 
this system would be almost $20 million at $100 per 
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memory slot. �e 96-rack Sequoia supercomputer 
supports a maximum of 64 GB of memory per CPU 
with 1,024 CPUs per rack, which will be useful in 
the event that we discover a life form with a 6 PB 
brain graph . . . but no bigger! 

If the graph cannot fit in the aggregate memory, 
it cannot be processed. �e conventional solution is 
to increase the system size (i.e., add more compute 
boards), but that will exacerbate the latency costs, 
making it harder to send data from CPU to CPU to 
keep them busy. Bottom line: It will be di�cult to 
scale memory in this manner if data continues to 
increase at exponential rates. 

We can store and process Big Graphs on mod-
est computing clusters where the graph data itself 
resides on disk. If the graph gets too big, then more 
or bigger disks can be easily added since disks have 
much greater data capacity than memory modules 
and many more drives can be attached (possibly 
over 100 with port multipliers). But accessing data 
on disks can be one million times slower than ac-
cessing it in memory. Algorithms for graphs on disk 
must amortize the higher latency of disk access by 
increasing the throughput of data. �ese algorithms 
minimize the amount of random access to avoid a 
frenzy of mechanical movement from disk heads 
seeking for data sectors. To do this e�ectively, the 
algorithms organize data in large sequential blocks 
because disk heads can e�ciently scan data in this 
manner. �is external memory (i.e., out-of-core) 
processing was first developed in the 1980s to cope 
with the growing disparity in both cost and perfor-
mance between disk and memory, so the problem 
of insu�cient memory is not new [16]. Process-
ing graphs too big to fit in memory appeared 
in the 1990s as streaming [17] and parallel disk 
model [18, 19] applications. 

Big Graphs in the cloud 

Open-source cloud technologies inspired by Google 
publications [20, 21] are being leveraged to solve 
Big Data problems in both industry and govern-
ment. �e Apache Accumulo project (http://
accumulo.apache.org), originally an internal 
research project at the National Security Agency 
(NSA), can be used as a graph database that can 
scale with disk capacity while providing security, 
availability, and fault tolerance. A Big Graph can 

be stored in Accumulo as a collection of sorted 
edges and queried using the Accumulo interfaces 
for scanning records. �e Hadoop MapReduce 
(http: //hadoop.apache.org) programming frame-
work can be combined with Accumulo for added 
processing power. A straightforward approach 
is to filter out edges from Accumulo (i.e., ex-
tract a subgraph) which can then be analyzed by 
MapReduce applications. 

Storing a graph as edges is natural in (key, value) 
repositories, like Accumulo, since an edge is a ver-
tex pair (i.e., the end points). Tables in Accumulo 
are distributed as a set of tablets, o�en many tablets 
on a single host in a cluster of multiple hosts. Each 
table is stored on disk in the Hadoop Distributed 
File System (HDFS), which replicates all data across 
the cluster to tolerate faults. Accumulo keeps track 
of the location of all tablets and can rebalance 
the distribution on demand. �e tablets can mi-
grate from one host to another depending on the 
load distribution or host failures. �e (key, value) 
records are sorted in each tablet, and tablets can be 
grouped dynamically so scans can e�ciently access 
only relevant subsets of data. 

In real-world graphs such as the social and neu-
ral networks discussed earlier, the degree for a few 
vertices can be much larger than the rest, resulting 
in skew distribution of tablets. �is skew creates a 
hot spot or bottleneck since the majority of queries 
will access only a few of the tablets. Additionally, 
adjacencies would be larger for Big Graphs, increas-
ing the time needed to scan all entries in a tablet. 
In Accumulo, a large adjacency can be distributed 
across multiple tablets to enable greater parallel 
processing, and the tablet sizes can be controlled 
for better latency and less resource contention. �e 
locality can be set—that is, tablets can be grouped 
based on types of edges (i.e., scan blue versus green 
edges)—to skip over data that is not relevant to 
the query. 

Updating edges in the Accumulo edge table can 
be accomplished using the online ingest interface 
or the o�ine bulk load operation. �e latter, as 
the name suggests, is reserved for large, wholesale 
updates that are completed in bulk. �e ingest 
interface provides a timely, low-latency mechanism 
which inserts updates that are globally sorted in 
periodic compaction operations; deleted edges are 
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removed a�er the compaction step. In the event 
that a tablet fails before sorting its entries, the up-
dates can be recovered from the write-ahead logs. 

�e MapReduce programming model is e�ective 
for distributed problems that can be decomposed 
into many independent tasks. �e map step pro-
cesses input data into a collection of (key, value) 
pairs which are then sorted and combined in the re-
duce step. By minimizing interdependency between 
processing elements, the amount of communication 
over the network is decreased and more time can 
be spent on actual processing—maximizing the 
computation-to-communication ratio. Increasing 
the number of compute resources should propor-
tionately decrease the processing time to just about 
the time required to communicate data between the 
map and reduce steps. 

�e canonical example of an embarrassingly 
parallel MapReduce algorithm that minimizes 
communication is the simple word-count pat-
tern described in the seminal MapReduce article 
by Google [21]. �e algorithm counts the occur-
rence of every word in a large corpus of documents 
where each document is split into blocks of lines 
and distributed to many processing elements. �e 
blocks are processed simultaneously by many inde-
pendent map tasks which output (word, 1) pairs for 
each word. �ese pairs are collected and summed 
in the reduce tasks to calculate the count for each 
word. You could run the MapReduce word-count 
algorithm on this article to output how many times 
the words “big,” “data,” and “graph” were used, but 
the e�ectiveness of MapReduce is better realized 
on very large data sets where the latency from disk 
access can be amortized. 

Developing e�ective graph algorithms in the 
MapReduce programming model requires “think-
ing in MapReduce,” which may seem unnatural 
at first. But this recasting of conventional graph 
algorithms into counting (key, value) pairs in 
MapReduce can make it possible to analyze mas-
sive graphs residing on disk [22, 23] by exploit-
ing locality. �e complexity involved in explicitly 
communicating and sharing data to analyze large 
graphs in BSP and PRAM systems is eliminated in 
MapReduce because the framework manages the 
data movement. �e result of this simpler pro-
gramming interface is that it can be more di�cult 

to express e�cient algorithms in MapReduce. But 
combining both Accumulo and MapReduce is 
a practical approach for storing, extracting, and 
analyzing Big Graphs. Here in the Computer and 
Information Sciences Research Group at NSA, we 
used this approach to demonstrate a breadth-�rst 
search at brain scale, traversing more than 70 tril-
lion edges on a 1 PB graph [24]. �is brain-size 
graph was nearly 20 times larger than the memory 
capacity in our moderate-size cluster, yet the rate 
of processing at this scale was the same at the 
scale of just one trillion edges, which �t entirely 
in memory.  
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